Affiliation:
1. Statoil Research Centre, Postuttak, N-7005 Trondheim, Norway
2. University of Trondheim, Department of Physics, N-7055 Dragvoll, Norway and Statoil Research Centre, Trondheim, Norway
Abstract
At the boundary between two solid media in welded contact, all three components of particle velocity and vertical traction are continuous through the boundary. Across the boundary between a fluid and a solid, however, only the vertical component of particle velocity is continuous while the horizontal components can be discontinuous. Furthermore, the pressure in the fluid is the negative of the vertical component of traction in the solid, while the horizontal components of traction vanish at the interface. Taking advantage of this latter fact, we show that total P‐ and S‐waves can be computed from the vertical component of the particle velocity recorded by single component geophones planted on the sea floor. In the case when the sea floor is transversely isotropic with a vertical axis of symmetry, the computation requires the five independent elastic stiffness components and the density. However, when the sea floor material is fully isotropic, the only material parameter needed is the local shear wave velocity. The analysis of the extraction problem is done in the slowness domain. We show, however, that the S‐wave section can be obtained by a filtering operation in the space‐frequency domain. The P‐wave section is then the difference between the vertical component of the particle velocity and the S‐wave component. A synthetic data example demonstrates the performance of the algorithm.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献