A generalized Haskell matrix method for borehole electromagnetics: Theory and applications

Author:

Pai David M.1,Huang Ming1

Affiliation:

1. Department of Electrical Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77004

Abstract

In borehole electromagnetics, both cylindrical and planar interfaces are present, leading to nonseparable field equations. The problem is two‐dimensional (2-D), and the finite‐element method is usually employed for solution. In this paper, the Generalized Haskell Matrix/Layer Eigenstate Propagator method is introduced to this class of problems. In the method, the solution problem is decomposed into a set of one‐dimensional (1-D) problems, and then the 1-D solutions are combined to form the final solution. The method employs no approximation, other than discretization of a continuous system as in all computer methods. Induction logs are calculated for the 6FF40 tool and a number of models. Results agree well with those of the finite‐element method. An important case in induction‐log interpretation is studied; namely, a three‐layer formation traversed by a borehole, the center layer being an oil‐bearing (resistive) layer sandwiched between two conductive shoulder layers. Simulation shows that conventional correction methods ignoring borehole‐bed coupling can lead to resistivities that differ from the true resistivities by a factor of 2 or even higher.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3