Seismic modeling study of the Earth's deep crust

Author:

Carcione José M.1,Finetti Icilio R.2,Gei Davide1

Affiliation:

1. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, 34010 Sgonico, Trieste, Italy. Emails:

2. University of Trieste Exploration Geophysics Group (EGG), Department of Geological, Environmental and Marine Sciences, via Weiss 1‐34127, Trieste, Italy.

Abstract

We use seismic modeling methods to validate the interpretation of deep‐crust seismic exploration. An approximation of the stacked section is obtained with the nonreflecting wave equation and the exploding‐reflector approach. Using this technique and ray‐tracing algorithms, we obtain a geological model by comparing the synthetic section with the real stacked section. An isotropic constitutive equation is assumed in this phase. The exact synthetic stacked section is then obtained by applying the standard processing sequence to a set of synthetic common‐shot profiles computed with the variable‐density acoustic wave equation. We introduce elliptical P‐wave anisotropy and the effects of small‐scale inhomogeneities by using a von Kármán autocovariance probability function that simulates scattering Q effects. Verification of the geological model by poststack migration constitutes an additional test. The methodology, which is suitable for areas of complex geology, is applied to a seismic line acquired in the northern Apennines as part of the Italian deep‐crust exploration project, CROP. This area is particularly difficult to interpret because of the presence of a complex tectonic setting.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bibliography;Wave Fields in Real Media;2022

2. Numerical methods;Wave Fields in Real Media;2022

3. Modeling fluid injection induced microseismicity in shales;Journal of Geophysics and Engineering;2018-01-22

4. A performance analysis of a mimetic finite difference scheme for acoustic wave propagation on GPU platforms;Concurrency and Computation: Practice and Experience;2016-06-10

5. Compact finite difference modeling of 2-D acoustic wave propagation;Journal of Computational and Applied Mathematics;2016-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3