SEISMIC WAVE PROPAGATION

Author:

Clewell D. H.1,Simon R. F.1

Affiliation:

1. Magnolia Petroleum Company, Field Research Laboratories, Dallas, Texas

Abstract

Speculations are made regarding the significance of the well‐known observation that seismic reflection energy is usually in the frequency range of from 20 to 100 cycles per second. The general absence of reflected energy below 20 cps is attributed to the fact that the wavelengths of seismic waves in this frequency range are becoming large compared to the thicknesses of reflecting beds; accordingly, the reflection coefficients are low with the results that the geologic section appears more or less homogeneous, the low frequency energy is unweakened by reflections, is transmitted efficiently, and can only return to the surface by refraction. As the frequency is increased the wavelengths become comparable to the vertical discontinuities represented by stratification and more efficient reflection takes place with the result that reflected energy is returned and detected at the surface. At still higher frequencies the wavelengths become comparable to small inhomogeneities distributed at random throughout the geologic section and the energy is therefore diffused and scattered to such an extent that transmission into the earth is limited. This weakening of the main wave front by scattering, plus the weakening by absorption processes involving viscous and solid friction, constitute an effective cutting off of high frequency transmission. The high frequency scattered energy diffuses back to the surface and appears on the seismogram as “hash,” unless eliminated by filters, or is absorbed before it reaches the surface. Such a speculative picture of seismic energy propagation accounts qualitatively for (1) the continuous reception of random energy that is always superimposed upon the reflection energy, (2) the tendency for deep reflections to be of lower frequency than shallow reflections, and (3) the fact that theoretical considerations of absorption do not always account for known attenuation of high frequency seismic energy.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pressure Wave Measurement of Clay Conditioned Using an Ultrasonic Signal with Non-destructive Testing (NDT) Methods;Proceedings of the 2nd International Conference on Electronics, Biomedical Engineering, and Health Informatics;2022

2. Colossal Monotonic Response to Hydrostatic Pressure in Molecular Crystal Induced by a Chemical Modification;Crystal Growth & Design;2014-07-31

3. Shallow seismic reflection section—Introduction;GEOPHYSICS;1998-07

4. References;Spectral Analysis in Geophysics;1974

5. Seismic interpretation of crustal structure in the flinders‐mt lofty ranges and gulf regions, South Australia;Journal of the Geological Society of Australia;1972-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3