Reflection waveform inversion using local descent methods: Estimating attenuation and velocity over a gas‐sand deposit

Author:

Hicks Graham J.1,Pratt R. Gerhard1

Affiliation:

1. Imperial College, Department of Geology, London SW7 2BP, United Kingdom

Abstract

Prestack seismic reflection data contain amplitudes, traveltimes, and moveout information; waveform inversion of such data has the potential to estimate attenuation levels, reflector depths and geometry, and background velocities. However, when inverting reflection data, strong nonlinearities can cause reflectors to be incorrectly imaged and can prevent background velocities from being updated. To successfully recover background velocities, previous authors have resorted to nonlinear, global search inversion techniques. We propose a two‐step inversion procedure using local descent methods in which we perform alternate inversions for the reflectors and the background velocities. For our reflector inversion we exploit the efficiency of the back‐propagation method when inverting for a large parameter set. For our background velocity inversion we use Newton inverse methods. During the background velocity inversions it is crucial to adaptively depth‐stretch the model to preserve the vertical traveltimes. This reduces nonlinearity by largely decoupling the effects of the background velocities and reflectors on the data. Nonlinearity is further reduced by choosing to invert for slownesses and by inverting for a sparse parameter set which is partially defined using geological reflector picks. Applying our approach to shallow seismic data from the North Sea collected over a gas‐sand deposit, we demonstrate that the proposed method is able to estimate both the geometry and internal velocity of a significant velocity structure not present in the initial model. Over successive iterations, the use of adaptive depth stretching corrects the pull‐down of the base of the gas sand. Vertical background velocity gradients are also resolved. For an insignificant extra cost the acoustic attenuation parameter Q is included in the inversion scheme. The final attenuation tomogram contains realistic values of Q for the expected lithologies and for the effect of partial fluid saturation associated with a shallow bright spot. The attenuation image may also indicate the presence of fracturing.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference51 articles.

1. Aki, K., and Richards, P. G., 1980, Quantitative seismology, theory and methods: W. H. Freeman & Co.

2. Bee, J. E., 1993, An investigation to determine the reason for the failure of a gas water contact to show on a site survey when it appeared as a bright spot on an exploration survey: M.S. thesis, Imperial College, Univ. of London.

3. Brittan, J., Forgues, E., Pratt, R. G., Morgan, J., Warner, M., Macintyre, H., and Marin, L., 1997, Wavefield inversion across the edge of the Chicxulub impact structure: J. Conference Proceedings,1, 65–72.

4. A simultaneous inversion for background velocity and impedance maps

5. Determination of background velocities by multiple migration fitting

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3