Explicit analytic expression for normal moveout from horizontal and dipping reflectors in weakly anisotropic media of arbitrary symmetry type

Author:

Rasolofosaon P. N. J.1

Affiliation:

1. Institut Français du Pétrole, Geophysics Dept., 1 et 4 ave. de Bois-Préau, 92852 Rueil Malmaison Cedex, France.

Abstract

When processing and inverting seismic reflection data, the NMO velocity must be correctly described, taking into account realistic situations such as the presence of anisotropy and dipping reflectors. Some dip‐moveout (DMO) algorithms have been developed, such as Tsvankin’s analytic formula. It describes the anisotropy‐induced distortions in the classical isotropic cosine of dip dependence of the NMO velocity. However, it is restricted to the vertical symmetry planes of anisotropic media, so the technique is unsuitable for the azimuthal inspection of sedimentary rocks, either with horizontal bedding and vertical fractures or with dipping bedding but no fractures. However, under the weak anisotropy approximation the deviations of the rays from a vertical plane can be neglected for the traveltimes computation, and the equation can still be applicable. Based on this approach, an explicit analytic expression for the P-wave NMO velocity in the presence of horizontal or dipping reflectors in media exhibiting the most general symmetry type (triclinic) is obtained in this work. If the medium exhibits a horizontal symmetry plane, the concise DMO equations are formally identical to Tsvankin’s except that the parameters δ and ε are not constant but depend on the azimuth ψ Physically, δ(ψ) is the deviation from the vertical P-wave velocity of the P-wave NMO velocity for a horizontal reflector normalized by the vertical P-wave velocity for the azimuth ψ. The function ε(ψ) has the same definition as δ(ψ) except that the P-wave NMO velocity is replaced by the horizontal P-wave velocity. Both depend linearly on (1) new dimensionless anisotropy parameters and (2) generalizing to arbitrary symmetry the transversely isotropic parameters δ and ε. In the most general symmetry case (triclinic), an additional term to the DMO formula is necessary. The numerical examples, based on experimental data in rocks, show two things. First, the magnitude of the DMO errors induced by anisotropy depends primarily on the absolute value of ε(ψ) − δ(ψ) and not on the individual values of ε(ψ) and δ(ψ), which is a direct consequence of the similarity between Tsvankin’s equation and the equation presented here. Second, the anisotropy‐induced DMO correction can be significant even in the presence of moderate anisotropy and can exhibit complex azimuthal dependence.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3