Wavelet filtering of magnetotelluric data

Author:

Trad Daniel O.1,Travassos Jandyr M.2

Affiliation:

1. CONICET‐CRICYT, C.C. 131, Mendoza 5500, Argentina.

2. Lamont‐Doherty Observatory, 61 Route 9W, Palisades, New York 10964.

Abstract

A method is described for filtering magnetotelluric (MT) data in the wavelet domain that requires a minimum of human intervention and leaves good data sections unchanged. Good data sections are preserved because data in the wavelet domain is analyzed through hierarchies, or scale levels, allowing separation of noise from signals. This is done without any assumption on the data distribution on the MT transfer function. Noisy portions of the data are discarded through thresholding wavelet coefficients. The procedure can recognize and filter out point defects that appear as a fraction of unusual observations of impulsive nature either in time domain or frequency domain. Two examples of real MT data are presented, with noise caused by both meteorological activity and power‐line contribution. In the examples given in this paper, noise is better seen in time and frequency domains, respectively. Point defects are filtered out to eliminate their deleterious influence on the MT transfer function estimates. After the filtering stage, data is processed in the frequency domain, using a robust algorithm to yield two sets of reliable MT transfer functions.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3