Affiliation:
1. University of Haifa, Geophysical Institute of Israel, Haifa, Israel,.
2. University of Cologne, Cologne, Germany,.
Abstract
Galvanic transmitter-receiver arrays commonly are used in marine controlled-source electromagnetic (CSEM) exploration of electrically resistive targets such as hydrocarbons, gas hydrates, etc. These arrays utilize vertical electric currents and, as a result, are expected to provide better resolving capability for exploring subhorizontal resistive structures than arrays including horizontal coils. If, however, a subseafloor resistive target is located within a transition zone at distances of up to a few kilometers from the shoreline, the 2D sea-coast resistivity contrast significantly affects the resolving capability of the measurements. An extensive multidimensional modeling supported by numerous offshore measurements showed that the inductive array consisting of a horizontal electric dipole transmitter and a broadside vertical magnetic dipole (horizontal coil) receiver exhibits much better resolving power in time domain compared to all other arrays but those with a vertical electric dipole. This effect takes place only if a short offset receiver coil is located between the transmitter dipole and the coast. If the coil is located at the seaside of the transmitter dipole, the signal lacks the resolving capability almost entirely. At large offsets, the resolving capability of the measurements is relatively low at both sides of the transmitter dipole. Although actual field measurements were conducted only to explore a shallow target (fresh subseafloor groundwater body), calculations show that the same phenomenon exists in case of deep targets (e.g., hydrocarbons).
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献