SaltNet: A production-scale deep learning pipeline for automated salt model building

Author:

Sen Satyakee1,Kainkaryam Sribharath1,Ong Cen1,Sharma Arvind2

Affiliation:

1. TGS, Houston, Texas, USA.

2. TGS Data and Analytics, Houston, Texas, USA.

Abstract

One of the most important steps in velocity model building for seismic imaging in salt basins such as the Gulf of Mexico is the iterative refinement of the salt geometry. Traditionally, this step is difficult to automate, and production workflows require extensive domain expert intervention to accurately interpret the salt bodies on images migrated with an incorrect intermediate velocity model. To alleviate this problem, we propose an end-to-end semisupervised deep learning pipeline, SaltNet, capable of fully automated salt interpretation during initial model building iterations. We show that the method can be used to build the initial salt model (top of salt-1 and base of salt-1 or salt body-1 iterations) without domain expert intervention while achieving accuracy close to that of a human expert. Unlike existing convolutional neural network (CNN)-based salt interpretation applications, this method is designed to work on noisy low-resolution real-data seismic images that are typically encountered during the initial model building stage. It is also generalizable to migrated images from previously unseen surveys. This is achieved by training a suite of deep high-capacity CNN models with a multiview semisupervised learning scheme that leverages data and model distillation concepts to make these models robust to potentially large domain differences that images from a new target survey may exhibit. Consequently, CNN models achieve human-level interpretation accuracy on such new surveys without the need to manually interpret any portion of the target survey. Results from a field test on a Gulf of Mexico survey show excellent agreement between migrated images generated by the conventional interpreter-picked and SaltNet-picked initial salt model.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3