Synergistic integration of seismic and geologic data for modeling petrophysical properties

Author:

Ma Yuan Zee1,Phillips David1,Gomez Ernest1

Affiliation:

1. Schlumberger, Denver, Colorado, USA.

Abstract

Reservoir characterization and modeling have become increasingly important for optimizing field development. Optimal valuation and exploitation of a field requires a realistic description of the reservoir, which, in turn, requires integrated reservoir characterization and modeling. An integrated approach for reservoir modeling bridges the traditional disciplinary divides and tears down interdisciplinary barriers, leading to better handling of uncertainties and improvement of the reservoir model for field development. This article presents the integration of seismic data using neural networks and the incorporation of a depositional model and seismic data in constructing reservoir models of petrophysical properties. Some challenging issues, including low correlation due to Simpson's paradox and under- or overfitting of neural networks, are mitigated in geostatistical analysis and modeling of reservoir properties by integrating geologic information. This article emphasizes the integration of well logs, seismic prediction, and geologic data in the 3D reservoir-modeling workflow.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3