Theoretical studies of in‐situ rock density determinations using underground cosmic‐ray muon intensity measurements with application in mining geophysics

Author:

Malmqvist L.1,Jönsson G.2,Kristiansson K.2,Jacobsson L.2

Affiliation:

1. Boliden Metall AB, Dept. of Prospecting, S93050 Boliden, Sweden

2. Dept. of Physics, Univ. of Lund, Sölvegatan 14, S22323 Lund, Sweden

Abstract

The feasibility of in‐situ rock density determinations by means of subsurface cosmic‐ray muon intensity measurements is based on theoretical calculations for two hypothetical scintillation counter telescopes: one is intended for registration in a gallery and the other is intended for use in narrow boreholes. It is shown that it is possible to measure the mean density of the rock traversed by the muons by measuring the muon intensity. The sensitivity of the method is favorable—a 1 percent change in mean rock density corresponds to a change of about 3 percent in the counting rate. A possible use of cosmic‐ray muon technique is the localization of an anomalous density distribution in overlying rock. A characteristic minimum registration time to detect a certain density anomaly varies from a few hours to about 10 days, depending on the geologic situation and the depth and design of the detector. The device is found to be most applicable for massive sulfide and iron exploration. This tecnique provides some new possibilities. A certain spatial resolution can be achieved at the expense of the registration time, and the overlying rock can, to some extent, be investigated in different directions from one point of observation. The method seems to be useful down to depths of approximately 600 m for the gallery application and 400 m for the borehole application. However, these limits are a consequence of the size of the detector, the size and density contrast of the target, and the maximum registration time accepted for each observation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3