DEEP REFLECTION SEISMIC DATA FOR IMPROVED IMAGING OF CRUST STRUCTURE: 2D CASE STUDY OF THE SOUTHWEST SUB-BASIN IN THE SOUTH CHINA SEA

Author:

Liu Yuping1,Wang Lijie1,Zhang Heng1,Lu Yunqian1,Li Fuyuan1,Jiang Wenbin1

Affiliation:

1. China Geological Survey, Guangzhou Marine Geological Survey, Ministry of Natural Resources, Key Laboratory of Marine Mineral Resources, Guangzhou, China and Guangzhou Marine Geological Survey, National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou, China..

Abstract

Seismic imaging of crustal structures becomes difficult in the presence of rough basements or complex bathymetry. Here, we present a 900 km deep seismic reflection profile collected across the Southwest Sub-basin (SWSB) of the South China Sea. By analyzing the types and distinctions of noise and effective signals, we employed deep structure migration techniques to improve crustal structure imaging, wide-line processing to predict 3D space multiples, and F-K domain time-space variable adaptive de-ghosting and different offset stacking to enhance the weak signals reflected from deep strucutures. The imaged continental crustal structure in the Penxi Bank exhibits moderate thinning, down to 15 km, and is intersected by continental-ward low-angle normal faults. Within the limitations of the OBS P-wave velocity model, we detected sub-horizontal lower crustal reflections that may be indicative of a weak lower crust. Two small-scale rollover structures along detachment faults rooted and rafted to the top of these weak lower crust. Based on the presence of narrow continent-ocean transitions(COTs), continental-ward detachment faults, and high lithosphere heat flow, we deduced that the mantle lithosphere breakup occurred earlier than the crust in the SWSB. Moreover, the continent-ocean transitions and oceanic crust domains demonstrate rough basements with numerous faults and approximately 20% diffuse or weak Moho reflections. From the southern COT to the initial oceanic domain, the thickness of the crust gradually reduces to only 3-5 km. This suggests a relatively low magmatic budget and protracted tectonic extension from the continental breakup to the onset of seafloor spreading. Within the oceanic crust domain, the crust thickness ranges from approximately 4-6 km, indicating a thinner oceanic crust than normal crust. Lower crustal reflections with a ridge-ward dipping pattern terminate at the Moho reflections and are partly connected to syn-spreading faults, hinting at their possible generation through syn-spreading faulting.

Publisher

Society of Exploration Geophysicists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3