Magnetic modeling of iron oxide copper-gold mineralization constrained by 3D multiscale integration of petrophysical and geochemical data: Cloncurry District, Australia

Author:

Austin James R.1,Schmidt Phillip W.1,Foss Clive A.1

Affiliation:

1. CSIRO Earth Science and Resource Engineering, North Ryde, Australia..

Abstract

Magnetite-rich iron oxide copper-gold deposits (IOCGs) are geologically and geochemically complex and present major challenges to geophysical investigation. They often sit beneath significant cover, exhibit magnetic remanence, and suffer from self-demagnetization effects. Because remanence in magnetite-bearing drill core samples is commonly overprinted by drilling, in situ natural remanent magnetization is difficult to measure accurately, and thus IOCGs cannot be modeled definitively using geophysics alone. We examined structural controls on a magnetite-rich IOCG in northwest Queensland and the relationships between structure, alteration, Fe oxides, and mineralization at core to deposit scale. Magnetite within the deposit has a multidomain structure, and thus it would commonly have an in situ magnetization parallel to the earth’s field. In contrast, pyrrhotite has a pseudosingle-domain structure and so it is the predominant carrier of stable remanence within the ore system. Geophysical lineament analyses are used to determine structural controls on mineralization, geophysical filters (e.g., analytic signal amplitude) are used to help define structural extent of the deposit, and basement geochemistry is used to map mineral footprints beneath cover. These techniques identified coincident anomalies at the intersection of north and northwest lineaments. Leapfrog™ interpolations of downhole magnetic susceptibility and Cu, Au, and Fe assay data were used to map the distribution of magnetite, copper, gold, and sulfur in 3D. The analysis revealed that Cu and Au mineralization were coupled with the magnetite net-vein architecture, but that Cu was locally enriched in the east–northeast-trending demagnetized zone. The results from this suite of geophysical, petrophysical, and geochemical techniques were integrated to constrain modeling of the Brumby IOCG. Brumby can be described as a breccia pipe sitting at the intersection of north-striking, east-dipping, and northwest-striking, southeast-dipping structures that plunges moderately to the south–southeast. The breccia pipe was overprinted by a relatively late net-vein magnetite breccia and crosscut by a later, magnetite-destructive, east–northeast-striking fault.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3