Mudstone (“shale”) depositional and diagenetic processes: Implications for seismic analyses of source-rock reservoirs

Author:

Hart Bruce S.1,Macquaker Joe H. S.2,Taylor Kevin G.3

Affiliation:

1. Formerly ConocoPhillips, Houston, Texas, USA; currently Statoil, Houston, Texas, USA..

2. Formerly Memorial University, St. John’s, Newfoundland, Canada; currently ExxonMobil, Houston, Texas, USA..

3. University of Manchester, School of Earth, Atmospheric and Environmental Sciences, Manchester, U.K..

Abstract

Source-rock reservoirs are fine-grained petroleum source rocks (“shales” or “mudstones”) having geomechanical properties that allow those rocks to produce hydrocarbons at economic rates after stimulation by hydraulic fracturing. Many of the assumptions commonly adopted by geophysicists to characterize shales cannot be applied to source-rock reservoirs. For example, the mineralogies of many source-rock reservoirs are not dominated by clay minerals and so mathematical and/or conceptual models developed for clay-dominated mudstones are not appropriate and cannot be applied to them. Instead, mudstones of shale plays are generally dominated by biogenic calcite and/or quartz. We use terminology of sedimentary geology to show that anisotropy is scale-dependent in source-rock reservoirs, and we discuss the depositional and diagenetic processes that control these and other geophysical properties of interest. The mudstones of source-rock reservoirs may or may not be anisotropic at the lamination scale (i.e., millimeters), the scale commonly used to measure anisotropic parameters via core plugs, but they are nearly always anisotropic at the bedset (centimeters to several meters) and member (tens of meters) scales. Because of the anisotropic nature of mudstones, elastic properties are not scalars at the length/thickness scales that can be defined using seismic methods. Properties of interest are likely to be different parallel to bedding compared to perpendicular to bedding. Because of the subseismic scale of much of this variability, thin-bed effects are likely to influence the AVO behavior of source-rock reservoirs.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3