Identification of brittle/ductile areas in unconventional reservoirs using seismic and microseismic data: Application to the Barnett Shale

Author:

Perez Altamar Roderick1,Marfurt Kurt J.1

Affiliation:

1. ConocoPhillips School of Geology and Geophysics, Norman, Oklahoma, USA..

Abstract

Brittleness in unconventional reservoirs is mainly controlled by mineralogy, and it increases with quartz and dolomite content, whereas an increase in the clay content represents an increase in ductility. To generate regional brittleness maps, we have correlated the mineralogy-based brittleness index to elastic parameters measured from well logs. This correlation can then be used to predict the brittleness from surface seismic elastic parameter estimates of [Formula: see text] and [Formula: see text]. We applied the workflow to a 3D seismic survey acquired in an area where more than 400 wells were drilled and hydraulically fractured prior to seismic acquisition. Combining [Formula: see text] and [Formula: see text] into a single 3D volume allowed the combination of both attributes into a single 3D volume, which can be converted to brittleness using a template based on the well log and core data. Neither of these seismic estimates were direct measures of reservoir completion quality. We, therefore, used production logs and extracted surface seismic estimates at microseismic event locations to analyze the completion effectiveness along several horizontal wellbores in the reservoir. We defined four petrotypes in [Formula: see text] and [Formula: see text] space depending on their brittleness and gas saturation, and we found that most of the microseismic events fell into the zone described as brittle in the [Formula: see text]-[Formula: see text] crossplots. These observations supported the well-known idea that regardless of where the well was perforated, microseismic events appeared to preferentially grow toward the more brittle areas, suggesting the growth of hydraulic fractures into the brittle petrotype.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3