Delineation of subsurface structures using self-potential, gravity, and resistivity surveys from South Purulia Shear Zone, India: Implication to uranium mineralization

Author:

Biswas Arkoprovo1,Mandal Animesh2,Sharma S. P.1,Mohanty W. K.1

Affiliation:

1. Indian Institute of Technology Kharagpur, Department of Geology and Geophysics, Kharagpur, West Bengal, India..

2. Formerly Indian Institute of Technology Kharagpur, Department of Geology and Geophysics, Kharagpur; presently CSIR-National Geophysical Research Institute, Hyderabad, India..

Abstract

The unexplored South Purulia Shear Zone (SPSZ) at the north of Singhbhum Shear Zone (SSZ) in Eastern India is a prospective zone for structural-guided hydrothermal mineralization. We carried out an integrated geophysical study using self-potential (SP), gradient-resistivity profiling (GRP), and gravity study across the SPSZ to identify the near-surface structural features and probable correlation with the uranium mineralization of the region. We studied a broad low SP, anomaly zone correlated with corresponding low-gravity and low-resistive zone across the same part of the study area. This conductive and low-density zone was identified as the width of the brittle-to-ductile and highly altered SPSZ. The 2D modeling of SP and residual gravity data along a northeast–southwest profile across the shear zone between Raghunathpur and Barabazar localities revealed the northerly dipping shear zone with an average width of [Formula: see text]. However, the 2D modeling of the SP data suggested numerous thick, sheet-type vertical and/or inclined structures intervening the shear zone, which were well correlated with the vertical structures delineated by the 2D gravity inverse model. The vertical alteration zones (density and conductivity) at [Formula: see text]-, 200-, and 400-m depths have been identified over this region. These alteration zones are likely to be mineralized zone because a hydrouranium anomaly has also been reported from those locations earlier. We studied the efficacy of an integrated approach using GRP, SP, and gravity surveys for the investigation of near-surface vertical to dipping conducting structures associated with uranium mineralization in such shear zone regions.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3