Affiliation:
1. Pulsonic Geophysical Ltd., 301, 400-3rd Avenue S.W., Calgary, Alberta, Canada T2P 1H2
2. Dept. of Geology and Geophysics, The University of Calgary, Calgary, Alberta, Canada T2P 1N4
Abstract
The processing of converted‐wave (P-SV) seismic data requires certain special considerations, such as commonconversion‐point (CCP) binning techniques (Tessmer and Behle, 1988) and a modified normal moveout formula (Slotboom, 1990), that makes it different for processing conventional P-P data. However, from the processor’s perspective, the most problematic step is often the determination of residual S‐wave statics, which are commonly two to ten times greater than the P‐wave statics for the same location (Tatham and McCormack, 1991). Conventional residualstatics algorithms often produce numerous cycle skips when attempting to resolve very large statics. Unlike P‐waves, the velocity of S‐waves is virtually unaffected by near‐surface fluctuations in the water table (Figure 1). Hence, the P‐wave and S‐wave static solutions are largely unrelated to each other, so it is generally not feasible to approximate the S‐wave statics by simply scaling the known P‐wave static values (Anno, 1986).
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献