Implications of the Born approximation for the magnetotelluric problem in three‐dimensional environments

Author:

Torres‐Verdín Carlos1,Bostick Francis X.2

Affiliation:

1. Engineering Geoscience, University of California at Berkeley

2. Electrical and Computer Engineering Department, University of Texas at Austin, Austin, TX 78712

Abstract

A first‐order Born approximation is obtained for the integral equations governing the surface magnetotelluric response over a three‐dimensional earth. Although accurate only in cases of low resistivity contrasts, the resulting expressions: (1) exhibit a linear relationship between a spatial perturbation in subsurface resistivity and the ensuing perturbation on the surface field response, and, more importantly, (2) allow arbitrary degrees of complexity in the geometrical characteristics of the subsurface. The linear system solutions derived from the Born approximation are studied by examining the properties of their associated kernels. These kernels may be thought of as a suite of horizontal magnetotelluric “wavelets” weighting the subsurface resistivity distribution at different depth levels. Analytical expressions for the wavelets are obtained in the wavenumber domain, thus generating a suite of magnetotelluric “transfer functions.” Expressions for the latter are particularized to the cases of one‐ and two‐dimensional geolectric media yielding results consistent with the characteristics of the magnetotelluric fields known to hold in these low‐order environments. Inspection of the electric transfer functions reveals severe sensitivity to near‐surface lateral variations of resistivity, which persists even at deep sensing frequencies. This near‐surface sensitivity is the result of an additive term in the electric field transfer functions, the static component, acting as a spatial highpass filter of the lateral variations of surface resistivity. A second additive component in the electric transfer functions, the induction component, functions as a spatial lowpass filter of the lateral variations in subsurface resistivity, and is primarily responsible for the inductive part of the surface electric field response. A common problem in magnetotelluric interpretation, the electric static effect can be reduced by inverting the role of the static component, i.e., by spatially low‐pass filtering the surface electric field. The suggested low‐pass filter for such an operation is one for which the cutoff wavenumber increases with frequency and is therefore insensitive to the response from the induction component. Low‐pass filtering of the surface electric field is best implemented in the field if the electric dipoles are deployed end‐to‐end continuously along a survey path. The magnetic field transfer functions, on the other hand, exhibit a single induction term with band‐pass filter properties which may actually lead to some amount of local distortion on the measured surface magnetic field. We propose to reduce this distortion by referring all electric field measurements to the primary magnetic field within the survey area. The primary magnetic field components, in turn, can be estimated by the spatial average of the magnetic measurements acquired at an array of magnetic stations. The suggested procedures for both the acquisition and processing of natural electric and magnetic field data encompass altogether a novel adaptation of the magnetotelluric method.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3