Anisotropy in sedimentary rocks modeled as random media

Author:

Kerner Claudia1

Affiliation:

1. Imperial College of Science, Technology and Medicine, London

Abstract

The anisotropic behavior to be expected from various types of sediments is investigated by considering them as laminated media, with randomly varying velocity depth distributions. Two different stochastic processes are used to model transitional and cyclic layering. The kinematics of waves propagating through the laminated media is studied by evaluating overall elastic parameters of the transversely isotropic medium in the long wavelength limit using averaging techniques. Models with strong velocity fluctuations and high correlation between P‐ and S‐wave velocities exhibit significant anisotropy, comparable in magnitude to field and laboratory measurements. Elastic wavefields for the stochastic models were computed and the results were compared with analytical and numerical results for homogeneous anisotropic media computed with the derived overall parameters. The wavefield modeling shows that anisotropy and scattering are not simply effects influencing waves on the opposite ends of the wavelength scale but that there is an intermediate range where both effects profoundly influence wave propagation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3