The influence of the planted geophone on seismic land data

Author:

Hoover G. M.1,O’Brien J. T.1

Affiliation:

1. Phillips Petroleum Co., Bartlesville, OK 74004

Abstract

Characteristics of the seismic data acquisition system that previously have been ignored become important as more sophisticated interpretive methods based on broader frequency bandwidths are developed to extract stratigraphic information from land data in hydrocarbon and mineral exploration. Theoretical and experimental results indicate that the geophone plant can be approximated by a damped oscillatory coupling, properties dependent upon the geophone mass, dimension of earth contact, and local soil consolidation. A massive geophone with minimal earth contact exhibits a low‐frequency plant resonance with weak damping and acts as a low‐pass filter to eliminate the high‐frequency components of a recorded signal. A lightweight geophone with large earth contact exhibits a high‐frequency plant resonance with strong damping and, consequently, filtering effects are minimal if the plant resonance is well above the signal bandwidth. Although signal filtering influences are weak for strong damping, phase delays can introduce errors of several milliseconds which resemble static errors. Additional complications arise since these time shifts are frequency dependent and, consequently, not identical for all reflection events in a seismic trace. The resonant frequency of the geophone plant increases with increased soil consolidation; however, damping demonstrates only a weak dependence upon consolidation. All of these factors can limit the effectiveness of common‐depth‐point (CDP) stacking methods if the proper technique is not practiced in the acquisition of broad‐bandwidth seismic data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A 101 dB SNR fourth-order ΣΔ modulator for MEMS digital geophones;AEU - International Journal of Electronics and Communications;2021-05

2. A low-power second-order sigma-delta modulator for MEMS digital geophones;AEU - International Journal of Electronics and Communications;2020-05

3. Seismic receiver coupling to the seafloor;Geophysical Prospecting;2019-03-15

4. Receiver ground coupling revisited: A laboratory experiment to investigate the effects of an autonomous nodal recording system;SEG Technical Program Expanded Abstracts 2017;2017-08-17

5. Acquisition Complete Session;SEG Technical Program Expanded Abstracts 2017;2017-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3