Seismic wave equation formulated by generalized viscoelasticity in fluid-saturated porous media

Author:

Ni Jun1ORCID,Gu Hanming1ORCID,Wang Yanghua2ORCID

Affiliation:

1. China University of Geosciences, College of Geophysics and Geomatics, Wuhan 430074, China.

2. Imperial College London, Resource Geophysics Academy, London SW7 2BP, UK. (corresponding author)

Abstract

Biot’s theory of poroelasticity describes seismic waves propagating through fluid-saturated porous media, so-called two-phase media. The classic Biot’s theory of poroelasticity considers the wave dissipation mechanism as being the friction of relative motion between the fluid in the pores and the solid rock skeleton. However, within the seismic frequency band, the friction has a major influence only on the slow P-wave and an insignificant influence on the fast P-wave. To represent the intrinsic viscoelasticity of the solid skeleton, we incorporate a generalized viscoelastic wave equation into Biot’s theory for the fluid-saturated porous media. The generalized equation that unifies the pure elastic and viscoelastic cases is constituted by a single viscoelastic parameter, presented as the fractional order of the wavefield derivative in the compact form of the wave equation. The generalized equation that includes the viscoelasticity appropriately describes the dissipation characteristics of the fast P-wave. Plane-wave analysis and numerical solutions of our wave equation reveal that (1) the viscoelasticity in the solid skeleton causes the energy attenuation on the fast P-wave and the slow P-wave at the same order of magnitude and (2) the generalized viscoelastic wave equation effectively describes the dissipation effect of the waves propagating through the fluid-saturated porous media.

Funder

Department of Science and Technology of SinoPec

National Science and Technology Major Project of China

Resource Geophysics Academy

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3