A compressed data approach for image-domain least-squares migration

Author:

Tuvi Ram1ORCID,Zhao Zeyu1ORCID,Sen Mrinal Kanti1

Affiliation:

1. The University of Texas at Austin, Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, Austin, Texas 78758, USA.(corresponding author); .

Abstract

We consider the problem of image-domain least-squares migration (LSM) based on efficiently constructing the Hessian matrix with sparse beam data. Specifically, we use the ultra-wide-band phase space beam summation method, in which beams are used as local basis functions to represent scattered data collected at the surface. The beam domain data are sparse. One can identify seismic events with significant contributions so that only beams with nonnegligible amplitudes need to be used to image the subsurface. In addition, due to the beams’ spectral localization, only beams that pass near an imaging point need to be taken into account. These two properties reduce the computational complexity of computing the Hessian matrix — an essential ingredient for LSM. As a result, we can efficiently construct the Hessian matrix based on analyzing the sparse beam domain data.

Funder

NSF

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3