Numerical dispersion mitigation neural network for seismic modeling

Author:

Gadylshin Kirill1ORCID,Vishnevsky Dmitry2,Gadylshina Kseniia2,Lisitsa Vadim3ORCID

Affiliation:

1. Institute of Mathematics SB RAS, Novosibirsk, Russia.

2. Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, Russia.

3. Institute of Mathematics SB RAS, Novosibirsk, Russia. (corresponding author)

Abstract

We have developed a novel approach for seismic modeling combining conventional finite differences with deep neural networks. The method includes the following steps. First, a training data set composed of a small number of common-shot gathers is generated. The data set is computed using a finite-difference scheme with fine spatial and temporal discretization. Second, the entire set of common-shot seismograms is generated using an inaccurate numerical method, such as a finite-difference scheme on a coarse mesh. Third, the numerical dispersion mitigation neural network is trained and applied to the entire data set to suppress the numerical dispersion. We have tested the approach on two 2D models, illustrating a significant acceleration of seismic modeling.

Funder

Mathematical Center in Akademgorodok

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference66 articles.

1. Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, 2016, TensorFlow: A system for large-scale machine learning: 12th USENIX symposium on operating systems design and implementation, OSDI 16, 265–283.

2. Numerical Temporal Dispersion Corrections For Broadband Temporal Simulation, RTM and FWI

3. Numerical performances of a hybrid local-time stepping strategy applied to the reverse time migration

4. Parallel 3-D viscoelastic finite difference seismic modelling

5. Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3