Investigating the effective resistivity of reinforced concrete waste storage tanks at the Hanford Site

Author:

Haas Allan1,Rucker Dale F.2,Levitt Marc T.3

Affiliation:

1. hydroGEOPHYSICS Inc., Richland, Washington 99354, USA..

2. hydroGEOPHYSICS Inc., Tucson, Arizona 85745, USA.(corresponding author).

3. Washington River Protection Solutions, Richland, Washington 93230, USA..

Abstract

Industrialized sites pose challenges for conducting electrical resistivity geophysical surveys because the sites typically contain metallic infrastructure that can mask electrolytic-based soil and groundwater contamination. The Hanford Nuclear Site in eastern Washington State, USA, is an industrialized site with underground storage tanks, piping networks, steel fencing, and other potentially interfering infrastructure that could inhibit the effectiveness of electrical resistivity tomography (ERT) to map historical and monitor current waste releases. The underground storage tanks are the largest contributor by volume to subsurface infrastructure and can be classified as reinforced concrete structures with an internal steel liner. Directly measuring the effective value for the electrical resistivity of the tanks, that is, the combination of individual components that comprise the tank’s shell, is not reasonably possible because they are buried and are dangerously radioactive. Therefore, we indirectly assess the general resistivity of the tanks and the surrounding infrastructure by developing synthetic ERT models with a parametric forward-modeling study using a wide range of resistivity values from [Formula: see text] to [Formula: see text], which are equivalent to steel and dry rock, respectively. The synthetic models use the long-electrode ERT (LE-ERT) method, whereby steel-cased metallic wells surrounding the tanks are used as electrodes. The patterns and values of the synthetic tomographic models are then compared with LE-ERT field data from the AX tank farm at the Hanford Site. This indirect method of assessing the effective resistivity reveals that the reinforced concrete tanks are electrically resistive and the accompanying piping infrastructure has little influence on the overall resistivity distribution when using electrically based geophysical methods for characterizing or monitoring waste releases. Our findings are consistent with nondestructive testing literature that also indicates reinforced concrete to be generally resistive.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3