Three-dimensional finite-difference finite-element frequency-domain wave simulation with multi-level optimized additive Schwarz domain-decomposition preconditioner: A tool for FWI of sparse node datasets

Author:

Tournier Pierre-Henri1,Jolivet Pierre2,Dolean Victorita3,Aghamiry Hossein S.4,Operto Stéphane4,Riffo Sebastian4

Affiliation:

1. Sorbonne University, CNRS, Paris, France..

2. University of Toulouse, IRIT-CNRS, Toulouse, France..

3. University of Strathclyde, UK and University Cote d’Azur - CNRS, LJAD, Nice, France..

4. University Cote d’Azur - CNRS - IRD - OCA, Geoazur, Valbonne, France..

Abstract

Efficient frequency-domain full-waveform inversion (FWI) of long-offset node data can be designed with a few discrete frequencies, which lead to modest data volumes to be managed during the inversion process. Moreover, attenuation effects can be straightforwardly implemented in the forward problem without the computational overhead. However, 3D frequency-domain seismic modeling is challenging because it requires solving a large and sparse linear indefinite system for each frequency with multiple right-hand sides (RHSs). This linear system can be solved by direct or iterative methods. The former allows efficient processing of multiple RHSs but may suffer from limited scalability for very large problems. Iterative methods equipped with a domain-decomposition preconditioner provide a suitable alternative to process large computational domains for sparse-node acquisition. We have investigated the domain-decomposition preconditioner based on the optimized restricted additive Schwarz (ORAS) method, in which a Robin or perfectly matched layer condition is implemented at the boundaries between the subdomains. The preconditioned system is solved by a Krylov subspace method, whereas a block low-rank lower-upper decomposition of the local matrices is performed at a preprocessing stage. Multiple sources are processed in groups with a pseudoblock method. The accuracy, the computational cost, and the scalability of the ORAS solver are assessed against several realistic benchmarks. In terms of discretization, we compare a compact wavelength-adaptive 27-point finite-difference stencil on a regular Cartesian grid with a P3 finite-element method on h-adaptive tetrahedral mesh. Although both schemes have comparable accuracy, the former is more computationally efficient, the latter being beneficial to comply with known boundaries such as bathymetry. The scalability of the method, the block processing of multiple RHSs, and the straightforward implementation of attenuation, which further improves the convergence of the iterative solver, make the method a versatile forward engine for large-scale 3D FWI applications from sparse node data sets.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3