Complete identification of complex salt geometries from inaccurate migrated subsurface offset gathers using deep learning

Author:

Muller Ana Paula O.1,Costa Jessé C.2,Bom Clecio R.3ORCID,Faria Elisangela L.4ORCID,Klatt Matheus4ORCID,Teixeira Gabriel4ORCID,de Albuquerque Marcelo P.4,de Albuquerque Marcio P.4ORCID

Affiliation:

1. Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil and Petróleo Brasileiro S.A. (PETROBRAS), Edifício Senado, Rio de Janeiro, Brazil. (corresponding author)

2. Universidade Federal do Pará, Pará, Brazil and National Institute of Petroleum Geophysics (INCT-GP), Salvador, Brazil.

3. Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil and Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro, Brazil.

4. Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil.

Abstract

Delimiting salt inclusions from migrated images is a time-consuming activity that relies on highly human-curated analysis and is subject to interpretation errors or limitations of the methods available. We develop the use of migrated images produced from an inaccurate velocity model (with a reasonable approximation of sediment velocity, but without salt inclusions) to predict the correct salt inclusions shape using a convolutional neural network. Our approach relies on subsurface common-image gathers to focus the sediments’ reflections around the zero offset and to spread the energy of salt reflections over large offsets. Using synthetic data, we train a U-Net to use common-offset subsurface images as input channels and the correct salt masks as the output of a semantic segmentation problem. The network learns to predict the salt inclusions masks with high accuracy; moreover, it also performs well when applied to synthetic benchmark data sets that were not previously introduced. Our training process successfully tunes the U-Net to learn the shape of complex salt bodies from partially focused subsurface offset images.

Funder

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Petrobras

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference45 articles.

1. Abadi, M., A. Agarwal, P. Barham, E. Brevdo, and Z. Chen, 2016, Tensorflow: Large-scale machine learning on heterogeneous distributed systems: arXiv preprint, arXiv:1603.04467.

2. Concurrent Detection of Salt Domes and Faults using ResNet with U-Net

3. Three dimensional SEG/EAEG models — an update

4. Deep-learning tomography

5. Deep learning-driven velocity model building workflow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3