Brown and Korringa’s expression for the saturated bulk modulus at high frequencies: Modification of Mavko and Jizba’s squirt flow model

Author:

Zhao Liming1ORCID,Chen Tongjun2ORCID,Mukerji Tapan3ORCID,Zhang Mingjin4,Xing Tao5

Affiliation:

1. China University of Mining and Technology, School of Resources and Geosciences, Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process of the Ministry of Education, Xuzhou, China.

2. China University of Mining and Technology, School of Resources and Geosciences, Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process of the Ministry of Education, Xuzhou, China. (corresponding author)

3. Stanford University, Department of Energy Resources Engineering, and by courtesy Departments of Geophysics and Geological Sciences, Stanford, California, USA.

4. Shandong Provincial Communications Planning and Design Institute Co., Ltd, Jinan, China.

5. Beijing Tan Chuang Resources Technology Co., Ltd, Beijing, China.

Abstract

The squirt flow model developed by Mavko and Jizba has been widely applied to quantify elastic moduli/velocities of fluid-saturated rocks at ultrasonic frequencies and the related modulus/velocity dispersion between ultrasonic and seismic frequencies. In the model, the high-frequency saturated bulk modulus is obtained by taking the unrelaxed frame bulk modulus as the drained/dry one as the input to Biot’s or Gassmann’s formula. However, when using Gassmann’s formula, the “new” rock matrix contains rock mineral matrix and fluid-saturated soft pores, which is heterogeneous at the microscopic scale and thus breaks the fundamental assumption of microhomogeneity for Gassmann’s formula. Therefore, the high-frequency saturated bulk modulus computed by Gassmann’s formula is inaccurate, especially when the soft-pore fraction (SPF) (the ratio of soft porosity to total porosity) or crack density is large. To this end, we have derived the Brown and Korringa’s expression (Mavko-Jizba-Gurevich [MJG]-BK model) for the high-frequency saturated bulk modulus in Mavko and Jizba’s model based on Berryman and Milton’s generalized Gassmann’s equations for the composite porous media, which correctly characterizes the microheterogeneity of new rock matrix. The parameters in the MJG-BK model are totally determined by measured quantities in the laboratory. Numerical example indicates that the MJG model is consistent with the MJG-BK model at small SPFs or crack densities. When the SPF/crack density becomes large, the difference between them becomes large, the MJG model loses its accuracy, and the MJG-BK model is preferred. Furthermore, experiment data from the laboratory validate the effectiveness of the proposed MJG-BK model. In summary, the model develops Brown and Korringa’s expression for Mavko and Jizba’s squirt flow model and can be used to calculate the high-frequency saturated bulk modulus at different SPFs or crack densities more accurately.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3