Bayesian subsampling of time-domain electromagnetic data using kernel density product

Author:

Li Hai1,Xue Guoqiang2,Chen Wen2

Affiliation:

1. Chinese Academy of Sciences, Institute of Geology and Geophysics, Key Laboratory of Mineral Resources, Beijing 100029, China and Chinese Academy of Sciences, Innovation Academy for Earth Sciences, Beijing 100029, China..

2. Chinese Academy of Sciences, Institute of Geology and Geophysics, Key Laboratory of Mineral Resources, Beijing 100029, China; Chinese Academy of Sciences, Innovation Academy for Earth Sciences, Beijing 100029, China; and University of Chinese Academy of Sciences, Beijing 100029, China..

Abstract

The Bayesian method is a powerful tool to estimate the resistivity distribution and associate uncertainty from time-domain electromagnetic (TDEM) data. As the forward simulation of the TDEM method is computationally expensive and a large number of samples are needed to globally explore the model space, the full Bayesian inversion of TDEM data is limited to layered models. To make high-dimensional Bayesian inversion tractable, we propose a divide-and-conquer strategy to speed up the Bayesian inversion of TDEM data. First, the full datasets and model spaces are divided into disjoint batches based on the coverage of the sources so that independent and highly efficient Bayesian subsampling can be conducted. Then, the samples from each subsampling procedure are combined to get the full posterior. To obtain an asymptotically unbiased approximation to the full posterior, a kernel density product method is used to reintegrate samples from each subposterior. The model parameters and their uncertainty are estimated from the full posterior. The proposed method is tested on synthetic examples and applied to a field dataset acquired with a large fixed-loop configuration. The 2D section from the Bayesian inversion revealed several mineralized zones, one of which matches well with the information from a nearby drill hole. The field example shows the ability of Bayesian inversion to infer reliable resistivity and uncertainty.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3