The 3D conical Radon transform for seismic signal processing

Author:

Sun Wenzhi1ORCID,Li Zhenchun2ORCID,Qu Yingming1ORCID

Affiliation:

1. China University of Petroleum (East China), Qingdao, China and Key Laboratory of Deep Oil and Gas, Qingdao, China.

2. China University of Petroleum (East China), Qingdao, China and Key Laboratory of Deep Oil and Gas, Qingdao, China. (corresponding author)

Abstract

Recently, the attenuation of highly aliased broadband surface waves has received significant attention as their high-frequency and low-speed components render f- k x- k y filters ineffective. As a popular tool widely used in seismic signal processing, the 3D linear Radon ([Formula: see text]) transform does not match the surface wave events in the time domain. This leads to the dispersal of energy over ellipses on the zero-intercept slice, whereas the reflected events over the ellipses are reflected on each intercept slice of the 3D linear Radon transform (LRT) domain, decreasing the resolution in slowness. We have introduced a new type of Radon transform defined on circular cones called 3D conical Radon transform (CRT) for seismic signal processing. Unlike LRT, the CRT maps seismic data to surface integrals on circular cones in the 3D seismic records. Consequently, surface wave events are focused as points on the zero-intercept slice, whereas the reflected events are points on each intercept slice of the CRT domain, which significantly improves the resolution in slowness compared with the LRT. We determine the performance of the CRT for seismic signal processing for random noise attenuation, primary and multiple separations, and surface wave attenuation. Based on a comparison with the LRT, synthetic data and field data sets validate the effectiveness of the CRT method at improving the focusing properties.

Funder

Major Science and techonology projects of petroChina

Young Elite Scientist Sponsorship Program by China Association for Science and Technology

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3