Seismic data interpolation without iteration using a t-x-y streaming prediction filter with varying smoothness

Author:

Liu Yang1ORCID,Wu Geng1ORCID,Zheng Zhisheng1ORCID

Affiliation:

1. Jilin University, College of Geo-exploration Science and Technology, Changchun 130026, China.(corresponding author); .

Abstract

Although there is an increase in the amount of seismic data acquired with wide-azimuth geometry, it is difficult to achieve regular data distributions in spatial directions owing to limitations imposed by the surface environment and economic factors. To address this issue, interpolation is an economical solution. The current state-of-the-art methods for seismic data interpolation are iterative methods. However, iterative methods tend to incur high computational costs, which restricts their application in cases of large, high-dimensional data sets. Hence, we have developed a two-step noniterative method to interpolate nonstationary seismic data based on streaming prediction filters (SPFs) with varying smoothness in the time-space domain and we extend these filters to two spatial dimensions. Streaming computation, which is the kernel of the method, directly calculates the coefficients of nonstationary SPF in the overdetermined equation with local smoothness constraints. In addition to the traditional streaming prediction-error filter, we adopt a similarity matrix to improve the constraint condition in which the smoothness characteristics of the adjacent filter coefficient change with the varying data. We also design noncausal-in-space filters for interpolation by using several neighboring traces around the target traces to predict the signal; this is performed to obtain more accurate interpolated results than those from the causal-in-space version. Compared to the Fourier projection onto a convex sets interpolation method, our method has the advantages of fast computational speed and nonstationary event reconstruction. Application of our method on synthetic and nonstationary field data finds that it can successfully interpolate high-dimensional data with low computational cost and reasonable accuracy even in the presence of aliased and conflicting events.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3