Approximation of P-, S1-, and S2-wave reflection coefficients for orthorhombic media

Author:

Zhang Ze1,Lu Jun2ORCID,Zhang Xueying3,Wang Yun4ORCID

Affiliation:

1. China University of Geosciences, School of Energy Resources, Beijing, China.

2. China University of Geosciences, School of Geophysics and Information Technology, Beijing, China. (corresponding author)

3. Geophysical Exploration Center, China Earthquake Administration, Zhengzhou, China.

4. China University of Geosciences, School of Geophysics and Information Technology, Beijing, China.

Abstract

Orthorhombic (ORT) media are commonly used in the descriptions of subsurface strata during the exploration and exploitation of unconventional hydrocarbon reservoirs. In anisotropic media, seismic waves propagating in ORT media usually occur as quasi-P, quasi-S1, and quasi-S2 waves. Approximating the phase velocities and reflection coefficients of these waves is of great significance for predicting the properties of unconventional reservoirs, such as their elastic parameters, fracture azimuths, and fracture densities. At the incidence angles of P waves, we have developed formulas to approximate the reflection coefficients of quasi-P, quasi-S1, and quasi-S2 waves based on their first-order phase velocities and polarization vectors. Under weak anisotropy and weak impedance contrast assumptions, in the [ X, Z] and [ Y, Z] symmetry planes, our approximations basically match Rüger’s approximations at small-to-moderate incidence angles. Numerical analyses verify that our approximations are accurate at all azimuth angles under high impedance contrast and strong anisotropy. Two important innovations are provided in our manuscript. First, the errors in the proposed reflection coefficients only lie in the first-order phase velocities and polarization vectors. Second, we use lower-upper factorization to decompose matrix-dependent reflection coefficients into multiple simple nested formulas, which can be used to calculate the reflection coefficients without matrix operations.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3