Anisotropic modeling with geometric multigrid preconditioned finite-element method

Author:

Sun Qingtao1ORCID,Zhang Runren1ORCID,Chen Ke2,Feng Naixing3ORCID,Hu Yunyun4ORCID

Affiliation:

1. Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina 27705, USA.

2. Xiamen University, Institute of Electromagnetics and Acoustics, Xiamen 361005, China.

3. Anhui University, Department of Education of Anhui Province, Hefei 230601, China and Anhui University, Institute of Physical Science and Information Technology, Hefei 230601, China.

4. Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina 27705, USA. (corresponding author).

Abstract

Formation anisotropy in complicated geophysical environments can have a significant impact on data interpretation of electromagnetic surveys. To facilitate full 3D modeling of arbitrary anisotropy, we have adopted an [Formula: see text]-version geometric multigrid preconditioned finite-element method (FEM) based on vector basis functions. By using a structured mesh, instead of an unstructured one, our method can conveniently construct the restriction and prolongation operators for multigrid implementation, and then recursively coarsen the grid with the F-cycle coarsening scheme. The geometric multigrid method is used as a preconditioner for the biconjugate-gradient stabilized method to efficiently solve the linear system resulting from the FEM. Our method avoids the need of interpolation for arbitrary anisotropy modeling as in Yee’s grid-based finite-difference method, and it is also more capable of large-scale modeling with respect to the [Formula: see text]-version geometric multigrid preconditioned finite-element method. A numerical example in geophysical well logging is included to demonstrate its numerical performance. Our [Formula: see text]-version geometric multigrid preconditioned FEM is expected to help formation anisotropy characterization with electromagnetic surveys in complicated geophysical environments.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3