Quasielastic least-squares reverse time migration of PS reflections

Author:

Feng Zongcai1ORCID,Huang Lianjie2ORCID

Affiliation:

1. Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. (corresponding author)

2. Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Abstract

Conventional analysis of amplitude variation with offset for elastic PS reflections is based on analytical reflection coefficients in a layered medium, and wave-equation-based PS migration is mainly used to produce a structural image. To overcome this problem, we have developed a least-squares reverse time migration (LSRTM) method for elastic PS reflections based on a quasielastic wave equation. The quasielastic wave equation can accurately model PS reflections with elastic amplitudes under the first-order Born approximation. Our LSRTM method inverts for perturbations of the S-wave velocity and density by minimizing the [Formula: see text] norm of the difference between recorded and predicted PS reflections modeled using a quasielastic wave equation. We refer to our new method as quasielastic LSRTM of PS reflections. Numerical tests on synthetic and field data indicate that our method can properly handle the amplitudes of elastic PS reflections and provides an accurate estimate of the perturbations of S-wave velocity and density. Extending the method to the 3D case is not straightforward and might require incorporating certain PS data processing techniques into the inversion itself.

Funder

Los Alamos National Laboratory

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3