Subsurface temperature prediction by means of the coefficient correction method of the optimal temperature: A case study in the Xiong’an New Area, China

Author:

Huang Guoshu1ORCID,Hu Xiangyun2ORCID,Cai Jianchao1ORCID,Ma Huolin1ORCID,Chen Bin3ORCID,Liao Chen1ORCID,Zhang Shihui1ORCID,Zhou Wenlong1ORCID

Affiliation:

1. China University of Geosciences-Wuhan, Institute of Geophysics & Geomatics, Hubei Subsurface Multi-scale Imaging Key Laboratory, Wuhan, China.

2. China University of Geosciences-Wuhan, Institute of Geophysics & Geomatics, Hubei Subsurface Multi-scale Imaging Key Laboratory, Wuhan, China. (corresponding author)

3. China University of Geosciences-Wuhan, Geological Survey Institute, Wuhan, China.

Abstract

Accurate estimation of the earth’s interior temperature is extremely important for studying fundamental scientific and applied geothermal problems. Existing temperature estimation methods cannot provide reliable accuracy in the cross-borehole space and beyond the borehole’s depth; however, resistivity could overcome this difficulty as a temperature-dependent proxy parameter. At present, this approach is based on the use of purely empirical formulas, whose validity is unjustifiably postulated to be invariant with respect to geologic settings. We develop an electromagnetic (EM) geothermometer based on the coefficient correction method of the optimal temperature (CCMOT). This geothermometer can accurately determine the relationship between the normalized resistivity and temperature in an underground space based on resistivity-temperature logging data and EM data; therefore, a visualized temperature distribution can be calculated. The CCMOT is applied to the subsurface temperature prediction in the Xiong’an New Area, with an accuracy of 86.69%–97.25%. Sensitivity analysis of the key variables of the CCMOT reveal that the CCMOT has relatively little dependence on the number of constraining boreholes and the optimization of the subdivision spacing of the logging data can significantly improve temperature prediction accuracy. The CCMOT can be used to determine the distribution of the heat structure of the reservoir and to interpret the geothermal field. In addition, the CCMOT is of great significance to the evaluation, scientific development, and sustainable use of geothermal resources.

Funder

National Key RD Program of China

The National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3