SWAN: A surface-towed modular controlled-source electromagnetic system for mapping submarine groundwater discharge and offshore groundwater resources

Author:

Pastoressa Anna Eliana1,Haroon Amir23,Everett Mark E.4,Rohde Lea2,Bartels Thies2,Wollatz-Vogt Martin2,Faghih Zahra2,Franz Gesa Katharina2,Micallef Aaron15

Affiliation:

1. University of Malta, Department of Geosciences, Marine Geology and Seafloor Surveying, Msida, Malta..

2. GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany..

3. University of Hawai´i at Mānoa, Hawai´i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, Honolulu, Hawaii, USA..

4. Texas A&M University, Department of Geology and Geophysics, College Station, Texas, USA.

5. Monterey Bay Aquarium Research Institute, Moss Landing, California, USA.

Abstract

Offshore freshened groundwater (OFG) and submarine groundwater discharge (SGD) are important components of coastal hydrologic systems. A lack of understanding of offshore groundwater systems and their interactions with onshore systems along the majority of global coastlines still exists due to a general paucity of field data. Recently, controlled-source electromagnetic (CSEM) techniques have emerged as a promising noninvasive method for identifying and characterizing OFG and SGD. Unfortunately, only a few systems are available in academic and research institutions worldwide, and applications are limited to specific regions. These systems are often limited by relatively high deployment costs, slow data acquisition rates, logistical complexity, and lack of modification options. A relatively inexpensive and user-friendly CSEM system is needed to overcome these limitations. We present the initial theoretical and practical developments of SWAN — a low-cost, modular, surface-towed hybrid time-frequency domain CSEM system capable of detecting OFG and SGD to water depths of 100 m. A field test of the system was carried out in the central Adriatic Sea at water depths between several tens to approximately 160 m to illustrate its capabilities. Through its ability to facilitate continuous measurements in both the time and frequency domain, the system has demonstrated its effectiveness in acquiring high-quality data while operating at towing speeds ranging from 2.5 to 3 kn. The resulting data coverage enables the system to detect variations in subsurface resistivity to depths of approximately 150–200 m below seafloor. With its modular, user-friendly design, SWAN provides an accessible, cost-efficient means to investigate the hydrogeology of shallow offshore environments.

Funder

Maltese Energy and Water Agency R&I Grant Scheme 2021

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3