Reflection moveout and parameter estimation for horizontal transverse isotropy

Author:

Tsvankin Ilya1

Affiliation:

1. Center for Wave Phenomena, Department of Geophysics, Colorado School of Mines, Golden, Colorado 80401-1887

Abstract

Transverse isotropy with a horizontal axis of symmetry (HTI) is the simplest azimuthally anisotropic model used to describe fractured reservoirs that contain parallel vertical cracks. Here, I present an exact equation for normal‐moveout (NMO) velocities from horizontal reflectors valid for pure modes in HTI media with any strength of anisotropy. The azimuthally dependent P‐wave NMO velocity, which can be obtained from 3-D surveys, is controlled by the principal direction of the anisotropy (crack orientation), the P‐wave vertical velocity, and an effective anisotropic parameter equivalent to Thomsen's coefficient δ. An important parameter of fracture systems that can be constrained by seismic data is the crack density, which is usually estimated through the shear‐wave splitting coefficient γ. The formalism developed here makes it possible to obtain the shear‐wave splitting parameter using the NMO velocities of P and shear waves from horizontal reflectors. Furthermore, γ can be estimated just from the P‐wave NMO velocity in the special case of the vanishing parameter ε, corresponding to thin cracks and negligible equant porosity. Also, P‐wave moveout alone is sufficient to constrain γ if either dipping events are available or the velocity in the symmetry direction is known. Determination of the splitting parameter from P‐wave data requires, however, an estimate of the ratio of the P‐to‐S vertical velocities (either of the split shear waves can be used). Velocities and polarizations in the vertical symmetry plane of HTI media, that contains the symmetry axis, are described by the known equations for vertical transverse isotropy (VTI). Time‐related 2-D P‐wave processing (NMO, DMO, time migration) in this plane is governed by the same two parameters (the NMO velocity from a horizontal reflector and coefficient ε) as in media with a vertical symmetry axis. The analogy between vertical and horizontal transverse isotropy makes it possible to introduce Thomsen parameters of the “equivalent” VTI model, which not only control the azimuthally dependent NMO velocity, but also can be used to reconstruct phase velocity and carry out seismic processing in off‐symmetry planes.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3