The critical reflection theorem

Author:

Fokkema Jacob T.1,Ziolkowski Anton1

Affiliation:

1. University of Technology Delft, Department of Mining Engineering, P.O. Box 5028, 2600 GA Delft, The Netherlands

Abstract

In predictive deconvolution of seismic data, it is assumed that the response of the earth is white. Any nonwhite components are presumed to be caused by the source wavelet or by unwanted multiples. We show that this whiteness assumption is invalid at precritical incidence. We consider plane waves incident on a layered acoustic half‐space. At exactly critical incidence at any interface in the half‐space, the lower layer acts similar to a rigid plate. The response of the half‐space is then all‐pass, or white. This result we call the critical reflection theorem. The response is also white if the waves are postcritically incident on the lower half‐space. In normal data processing these postcritical components are removed by muting. Thus the whiteness assumption is normally applied to exactly that part of the data where it is invalid. The demarcation between precritical and postcritical incidence can be exploited for the purposes of deconvolution, provided the data can be decomposed into plane waves. To develop this application, we consider the response of a point source in the uppermost layer of the layered half‐space, with a free surface above. The response is simply a superposition of the plane‐wave responses already studied, with complications introduced by the source and receiver ghosts and by multiples in the upper layer. At postcritical incidence the earth response is white for all plane‐wave components; the source spectrum may be estimated from the postcritical plane‐wave components after removing the effects of ghosts and multiples in the upper layer. If the source signature is already known, the demarcation criterion can be used to separate intrinsic absorption effects from attenuation effects caused by scattering.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bibliography;Seismic While Drilling;2022

2. Preprocessing of SWD data;Seismic While Drilling;2022

3. Seismic Processing: Migration I Complete Session;SEG Technical Program Expanded Abstracts 2017;2017-08-17

4. Image-domain mute for postcritical energy attenuation in wave-based migrations;SEG Technical Program Expanded Abstracts 2017;2017-08-17

5. Signal Processing Challenges When Processing DST and CST Seismic Data Containing TIRs;Geotechnical Testing Journal;2014-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3