Preferred orientation and elastic anisotropy of illite-rich shale

Author:

Wenk Hans-Rudolf1234,Lonardelli Ivan1234,Franz Hermann1234,Nihei Kurt1234,Nakagawa Seiji1234

Affiliation:

1. University of California, Department of Earth and Planetary Science, Berkeley, California. .

2. HASYLAB, DESY, Hamburg, Germany. .

3. Chevron Energy Technology Company, Seismic Analysis & Property Estimation, San Ramon, California. .

4. Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, California. .

Abstract

Shales display significant seismic anisotropy that is attributed in part to preferred orientation of constituent minerals. This orientation pattern has been difficult to quantify because of the poor crystallinity and small grain size of clay minerals. A new method is introduced that uses high-energy synchrotron X-rays to obtain diffraction images in transmission geometry and applies it to an illite-rich shale. The images are analyzed with the crystallographic Rietveld method to obtain quantitative information about phase proportions, crystal structure, grain size, and preferred orientation (texture) that is the focus of the study. Textures for illite are extremely strong, with a maximum of 10 multiples of a random distribution for (001) pole figures. From the three-dimensional orientation distribution of crystallites, and single-crystal elastic properties, the intrinsic anisotropic elastic constants of the illite aggregate (excluding contribution from aligned micropores) can be calculated by appropriate medium averaging. The illitic shale displays roughly transverse isotropy with [Formula: see text] close to [Formula: see text] and more than twice as strong as [Formula: see text]. This method will lend itself to investigate complex polymineralic shales and quantify the contribution of preferred orientation to macroscopic anisotropy.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3