Design of one‐way wavefield extrapolation operators, using smooth functions in WLSQ optimization

Author:

Thorbecke Jan W1,Wapenaar Kees1,Swinnen Gerd1

Affiliation:

1. Delft University of Technology, Section of Applied Geophysics, Delft, Netherlands. Emails:

Abstract

Many depth migration methods use one‐way frequency–space depth extrapolation methods. These methods are generally considered to be expensive, so it is important to find the most efficient way of implementing them. This usually means making spatial convolution operators that are as short as possible. Applying the extrapolation operators in a recursive way, using small depth steps, also demands that the operators do not amplify the wavefield at every depth step.Weighted least squares is an appropriate method to use for designing extrapolation operators that are accurate and efficient and that remain stable in a recursive algorithm. The extrapolated wavefields calculated with these operators are comparable with the extrapolation results obtained with other known operator design techniques as the Remez exchange method and nonlinear optimization. In this paper, the weighted least‐squares technique is refined by using different model functions. By smoothing the phase and amplitude transition at the evanescent cutoff, we can stabilize the resulting operators.The accuracy of the operators is shown in zero‐offset migration impulse responses in 2D and 3D media. The Sigsbee2A data set is used to illustrate the quality of the extrapolation operators in prestack depth migration in a complex medium.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference20 articles.

1. Blacquière, G., 1989, 3D wave field extrapolation in seismic depth migration: Ph.D. thesis, Delft University of Technology.

2. 3D TABLE-DRIVEN MIGRATION1

3. Etgen, J. T., 1994, Stability of explicit depth extrapolation through laterally‐varying media: 64th Annual International Meeting, SEG, Extended Abstracts, 1266–1269.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3