Expanded uncertainty quantification in inverse problems: Hierarchical Bayes and empirical Bayes

Author:

Malinverno Alberto1,Briggs Victoria A.2

Affiliation:

1. Schlumberger‐Doll Research, Ridgefield, Connecticut. 06877.

2. Formerly Schlumberger‐Doll Research, Ridgefield, Connecticut. 06877; presently Massachusetts Institute of Technology, Earth Resources Laboratory, 42 Carleton Street, Cambridge, Massachusetts 02142.

Abstract

A common way to account for uncertainty in inverse problems is to apply Bayes' rule and obtain a posterior distribution of the quantities of interest given a set of measurements. A conventional Bayesian treatment, however, requires assuming specific values for parameters of the prior distribution and of the distribution of the measurement errors (e.g., the standard deviation of the errors). In practice, these parameters are often poorly known a priori, and choosing a particular value is often problematic. Moreover, the posterior uncertainty is computed assuming that these parameters are fixed; if they are not well known a priori, the posterior uncertainties have dubious value.This paper describes extensions to the conventional Bayesian treatment that assign uncertainty to the parameters defining the prior distribution and the distribution of the measurement errors. These extensions are known in the statistical literature as “empirical Bayes” and “hierarchical Bayes.” We demonstrate the practical application of these approaches to a simple linear inverse problem: using seismic traveltimes measured by a receiver in a well to infer compressional wave slowness in a 1D earth model. These procedures do not require choosing fixed values for poorly known parameters and, at most, need a realistic range (e.g., a minimum and maximum value for the standard deviation of the measurement errors). Inversion is thus made easier for general users, who are not required to set parameters they know little about.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3