Subsalt imaging by target-oriented inversion-based imaging:A 3D field-data example

Author:

Tang Yaxun1,Biondi Biondo2

Affiliation:

1. Formerly Stanford University, Stanford Exploration Project, Geophysics Department, Stanford, California, USA; presently ExxonMobil Upstream Research Company, Houston, Texas, USA..

2. Stanford University, Stanford Exploration Project, Geophysics Department, Stanford, California, USA..

Abstract

Reflectivity images obtained by prestack depth migration are often distorted by uneven subsurface illumination, especially in areas with complex geology, such as subsalt regions. We address the problem of uneven illumination in subsalt imaging by posing the reflectivity-imaging problem as a linear inverse problem and solving it in the image domain in a target-oriented fashion. The most computationally intensive part of the image-domain inversion is the explicit computation of the so-called Hessian operator. The Hessian is defined to be the normal operator of the associated modeling/imaging operator, which is a direct measure of the illumination deficiency of the imaging system. We can overcome the cost issue by using the phase-encoding technique in the 3D conical-wave domain for marine streamer acquisitions. We apply the inversion-based imaging methodology to a 3D field data set acquired from the Gulf of Mexico, and we precondition the inversion with nonstationary dip filters, which naturally incorporate interpreted geologic information. Numerical examples demonstrate that imaging by regularized inversion successfully recovers the reflectivities from the effects of uneven illumination, yielding images with more balanced amplitudes and higher spatial resolution.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3