Digital soil mapping of compositional particle-size fractions using proximal and remotely sensed ancillary data

Author:

Buchanan S.1,Triantafilis J.1,Odeh I. O. A.2,Subansinghe R.3

Affiliation:

1. The University of New South Wales, School of Biological, Earth, and Environmental Sciences, Australia..

2. The University of Sydney, Faculty of Agriculture, Food and Natural Resources, Australia.

3. Fisheries and Forestry Canberra, Department of Agriculture, Australia.

Abstract

The soil particle-size fractions (PSFs) are one of the most important attributes to influence soil physical (e.g., soil hydraulic properties) and chemical (e.g., cation exchange) processes. There is an increasing need, therefore, for high-resolution digital prediction of PSFs to improve our ability to manage agricultural land. Consequently, use of ancillary data to make cheaper high-resolution predictions of soil properties is becoming popular. This approach is known as “digital soil mapping.” However, most commonly employed techniques (e.g., multiple linear regression or MLR) do not consider the special requirements of a regionalized composition, namely PSF; (1) should be nonnegative (2) should sum to a constant at each location, and (3) estimation should be constrained to produce an unbiased estimation, to avoid false interpretation. Previous studies have shown that the use of the additive log-ratio transformation (ALR) is an appropriate technique to meet the requirements of a composition. In this study, we investigated the use of ancillary data (i.e., electromagnetic (EM), gamma-ray spectrometry, Landsat TM, and a digital elevation model to predict soil PSF using MLR and generalized additive models (GAM) in a standard form and with an ALR transformation applied to the optimal method (GAM-ALR). The results show that the use of ancillary data improved prediction precision by around 30% for clay, 30% for sand, and 7% for silt for all techniques (MLR, GAM, and GAM-ALR) when compared to ordinary kriging. However, the ALR technique had the advantage of adhering to the special requirements of a composition, with all predicted values nonnegative and PSFs summing to unity at each prediction point and giving more accurate textural prediction.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference42 articles.

1. Relative variation diagrams for describing patterns of compositional variability

2. Bierwirth, P. N., 1997, The use of airborne gamma-emission data for detecting soil properties: Third International Airborne Remote Sensing Conference and Exhibition.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3