Moho depth and sediment thickness estimation beneath the Red Sea derived from satellite and terrestrial gravity data

Author:

Salem Ahmed1,Green Chris2,Campbell Simon3,Fairhead J. Derek2,Cascone Lorenzo3,Moorhead Lee3

Affiliation:

1. Getech, Leeds, UK; University of Leeds, Leeds, UK, and Nuclear Materials Authority, Cairo, Egypt..

2. Getech, Leeds, UK and University of Leeds, Leeds, UK..

3. Getech, Leeds, UK..

Abstract

We sought to map the depth and density contrast of the Mohorovičić discontinuity (Moho) across the Red Sea area and to model sedimentary thickness from gravity data. The gravity data that are used are a combination of satellite and terrestrial gravity data processed into a Bouguer anomaly grid. A 200-km low-pass filter was used to separate this grid into regional and residual gravity grids. We inverted the regional gravity grid to a Moho depth map based on a density contrast map that is constrained by published seismic results. The interpreted Moho is shallowest ([Formula: see text]) along the axis of the central Red Sea, [Formula: see text] along the axis to the south, and [Formula: see text] in the northern Red Sea. The depth increased to [Formula: see text] at the coast and 35–40 km in the adjacent continents. The residual gravity data provided insights into the tectonic fabric along the whole rift and provided a good correlation with magnetic lineaments where these are available. We used the complete Bouguer anomaly to model sedimentary thicknesses constrained by wells and the interpreted Moho. The modeling results are consistent with the presence of large-scale, ridge parallel tilted fault blocks forming subbasins with a maximum depth of about 6–7 km. Our models suggest that the northern Red Sea has an asymmetric basement surface with the western side deeper than the eastern side. The results indicate the presence of oceanic crust in the central and southern parts of the Red Sea, but not in the north. The very thin crust and interpreted oceanic crustal density in the central Red Sea suggest that this area is fully oceanic—although possibly quite young.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3