On charge accumulation in heterogeneous porous rocks under the influence of an external electric field

Author:

Revil A.1

Affiliation:

1. Colorado School of Mines, Department of Geophysics, Golden, Colorado, USA, and Université de Savoie, ISTerre, CNRS, UMR CNRS 5275, Le Bourget du Lac, France..

Abstract

Electric polarization is described as the sum of charge accumulations (free charge density) and orientation of polar molecules such as those of bound and free water molecules (bound charge polarization). Charge accumulation in porous materials cannot be described with Ohm’s law alone. Nonequilibrium thermodynamics or the upscaling of the local Nernst-Planck equation imply that the drift of ions in porous media is controlled by the gradient of their electrochemical potentials and not solely by the electric field. In porous media, electrochemical capacitance is at least six to eight orders of magnitude larger than electrostatic capacitance associated with bound charge polarization. In other words, the low-frequency ([Formula: see text]) effective permittivity entering Ampère’s law is six to eight orders of magnitude larger than high-frequency dielectric permittivity (measured for instance at 1 GHz). Low-frequency polarization of porous media, with no metallic particles (no electronic conductors and semiconductors) is controlled by polarization of the inner component of the electrical double layer coating the grains. This layer, called the “Stern layer,” plays a strong role in defining the cation exchange capacity of a material. A polarization model based on the polarization of the Stern layer explains a large number of experimental observations and could be used in the interpretation of hydro- and petroleum geophysical measurements.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3