Global sensitivity analysis for crosswell seismic and neutron-capture measurements in CO2 storage projects

Author:

Chugunov Nikita1,Altundas Yusuf Bilgin1,Ramakrishnan T. S.1,Senel Ozgur2

Affiliation:

1. Schlumberger-Doll Research, Cambridge, Massachusetts, USA., .

2. Schlumberger Carbon Services, Sugar Land, Texas, USA..

Abstract

Quantification of reservoir uncertainty is an essential part of a monitoring design. A systematic approach that quantitatively links predicted uncertainties in a monitoring program to the underlying reservoir variability is, however, needed. We developed a methodology for quantifying uncertainty in crosswell seismic monitoring combined with neutron-capture logging and applied global sensitivity analysis (GSA) to compute and rank contributions of uncertain reservoir parameters to the predicted uncertainty of the measurements. The workflow is illustrated by a numerical study using a simplified model of a [Formula: see text] storage site where crosswell measurements have not actually been taken. Synthetic seismic responses are computed through the integration of multiphase flow, a new thermodynamically consistent fluid substitution model, and a fast marching eikonal solver. We quantified uncertainty in first-arrival times to illustrate the potential utility of crosswell seismic surveys and their limitation. Consistent with these calculations, uncertainties in neutron capture cross-section logs are also computed and related to predicted [Formula: see text] migration. The predicted uncertainty range for neutron-capture measurements indicated significant sensitivity to the uncertainty of the reservoir properties (standard deviations [STDs] of up to 6 c.u. in the injector and up to 3.5 c.u. in the monitoring well). However, the STD of predicted time-lapse crosswell seismic responses for two different source locations did not exceed 0.75 ms during the life of the project, suggesting limited value of first-arrival measurements for reservoir-parameter inversion in this case. With the time-dependent uncertainty of the predicted measurements, calculated GSA indices provided a quantitative basis for the monitoring program design. Practical implications of GSA results for model reduction and subsequent inversion were also evaluated.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3