Affiliation:
1. Schlumberger-Doll Research, Cambridge, Massachusetts, USA., .
2. Schlumberger Carbon Services, Sugar Land, Texas, USA..
Abstract
Quantification of reservoir uncertainty is an essential part of a monitoring design. A systematic approach that quantitatively links predicted uncertainties in a monitoring program to the underlying reservoir variability is, however, needed. We developed a methodology for quantifying uncertainty in crosswell seismic monitoring combined with neutron-capture logging and applied global sensitivity analysis (GSA) to compute and rank contributions of uncertain reservoir parameters to the predicted uncertainty of the measurements. The workflow is illustrated by a numerical study using a simplified model of a [Formula: see text] storage site where crosswell measurements have not actually been taken. Synthetic seismic responses are computed through the integration of multiphase flow, a new thermodynamically consistent fluid substitution model, and a fast marching eikonal solver. We quantified uncertainty in first-arrival times to illustrate the potential utility of crosswell seismic surveys and their limitation. Consistent with these calculations, uncertainties in neutron capture cross-section logs are also computed and related to predicted [Formula: see text] migration. The predicted uncertainty range for neutron-capture measurements indicated significant sensitivity to the uncertainty of the reservoir properties (standard deviations [STDs] of up to 6 c.u. in the injector and up to 3.5 c.u. in the monitoring well). However, the STD of predicted time-lapse crosswell seismic responses for two different source locations did not exceed 0.75 ms during the life of the project, suggesting limited value of first-arrival measurements for reservoir-parameter inversion in this case. With the time-dependent uncertainty of the predicted measurements, calculated GSA indices provided a quantitative basis for the monitoring program design. Practical implications of GSA results for model reduction and subsequent inversion were also evaluated.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献