Local time stepping with the discontinuous Galerkin method for wave propagation in 3D heterogeneous media

Author:

Minisini Sara1,Zhebel Elena1,Kononov Alexey2,Mulder Wim A.3

Affiliation:

1. Shell Global Solutions International BV, Rijswijk, The Netherlands.

2. Source Contracting, Culemborg, The Netherlands.

3. Shell Global Solutions International BV, Rijswijk, The Netherlands and Delft University of Technology, Department of Geoscience & Engineering, Faculty of Civil Engineering and Geosciences, Delft, The Netherlands.

Abstract

Modeling and imaging techniques for geophysics are extremely demanding in terms of computational resources. Seismic data attempt to resolve smaller scales and deeper targets in increasingly more complex geologic settings. Finite elements enable accurate simulation of time-dependent wave propagation in heterogeneous media. They are more costly than finite-difference methods, but this is compensated by their superior accuracy if the finite-element mesh follows the sharp impedance contrasts and by their improved efficiency if the element size scales with wavelength, hence with the local wave velocity. However, 3D complex geologic settings often contain details on a very small scale compared to the dominant wavelength, requiring the mesh to contain elements that are smaller than dictated by the wavelength. Also, limitations of the mesh generation software may produce regions where the elements are much smaller than desired. In both cases, this leads to a reduction of the time step required to solve the wave propagation and significantly increases the computational cost. Local time stepping (LTS) can improve the computational efficiency and speed up the simulation. We evaluated a local formulation of an LTS scheme with second-order accuracy for the discontinuous Galerkin finite-element discretization of the wave equation. We tested the benefits of the scheme by considering a geologic model for a North-Sea-type example.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3