Seismic attenuation from recordings of ambient noise

Author:

Weemstra Cornelis1,Boschi Lapo2,Goertz Alexander3,Artman Brad4

Affiliation:

1. Spectraseis, Inc., Denver, Colorado, USA; ETH Zürich, Institute of Geophysics, Zürich, Switzerland..

2. UPMC, Université Paris, CNRS, Institut des Sciences de la Terre de Paris, Paris, France; University of Zürich, Institute of Theoretical Physics, Zürich, Switzerland..

3. Presently PGS Geophysical AS, Lysaker, Norway; formerly ETH Zürich, Swiss Seismological Service, Zürich, Switzerland..

4. Spectraseis, Inc., Denver, Colorado, USA..

Abstract

We applied seismic interferometry to data from an ocean-bottom survey offshore Norway and found that ambient seismic noise can be used to constrain subsurface attenuation on a reservoir scale. By crosscorrelating only a few days of recordings by broadband ocean bottom seismometers, we were able to retrieve empirical Green’s functions associated with surface waves in the frequency range between 0.2 and 0.6 Hz and acoustic waves traveling through the sea water between 1.0 and 2.5 Hz. We discovered that the decay of these surface waves cannot be explained by geometrical spreading alone and required an additional loss of energy with distance. We quantified this observed attenuation in the frequency domain using a modified Bessel function to describe the cross-spectrum in a stationary field. We averaged cross-spectra of equally spaced station couples and sorted these azimuthally averaged cross-spectra with distance. We then obtained frequency-dependent estimates of attenuation by minimizing the misfit of the real parts to a damped Bessel function. The resulting quality factors as function of frequency are indicative of the depth variation of attenuation and correlated with the geology in the survey area.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3