Affiliation:
1. Stanford University, Stanford Rock Physics Laboratory..
Abstract
Microporous rocks are being increasingly researched as novel exploration and development technologies facilitate production of the reserves confined in the low-permeability reservoir. The ability to numerically estimate effective permeability is pivotal to characterizing the production capability of microporous reservoirs. In this study, a novel methodology is presented for estimating the steady-state effective permeability from FIB-SEM volumes. We quantify the effect of a static adsorbed monolayer and Knudsen diffusion on effective permeability as a function of pore pressure to better model production of microporous rock volumes. The adsorbed layer is incorporated by generating an effective pore geometry with a pore pressure-dependent layer of immobile voxels at the fluid-solid interface. Due to the steady-state nature of this study, surface diffusion within the adsorbed layer and topological variations of the layer within pores are neglected, potentially resulting in underestimation of effective permeability over extended production time periods. Knudsen diffusion and gas slippage is incorporated through computation of an apparent permeability that accounts for the rarefaction of the pore fluid. We determine that at syn-production pore pressures, permeability varies significantly as a function of the phase of the pore fluid. Simulation of methane transport in micropores indicates that, in the supercritical regime, the effect of Knudsen diffusion relative to adsorption is significantly reduced resulting in effective permeability values up to 10 nanodarcies ([Formula: see text]) less or 40% lower than the continuum prediction. Contrastingly, at subcritical pore pressures, the effective permeability is significantly greater than the continuum prediction due to rarefaction of the gas and the onset of Knudsen diffusion. For example, at 1 MPa, the effective permeability of the kerogen body is five times the continuum prediction. This study demonstrates the importance of, and provides a novel methodology for, incorporating noncontinuum effects in the estimation of the transport properties of microporous rocks.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Reference41 articles.
1. EIA, 2010a, Annual Energy Outlook 2010.
2. EIA, 2010b, U. S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 2009.
3. EIA, 2012, Annual Energy Outlook 2012.
4. Shale Gas-in-Place Calculations Part I: New Pore-Scale Considerations
5. Gaseous slip flow in long microchannels
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献