Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints

Author:

Johnson Timothy C.1,Versteeg Roelof J.2,Rockhold Mark1,Slater Lee D.3,Ntarlagiannis Dimitrios3,Greenwood William J.4,Zachara John1

Affiliation:

1. Pacific Northwest National Laboratory, Energy and Environment Directorate, Richland, Washington, USA..

2. Subsurface Insights, LLC, Hanover, New Hampshire, USA..

3. Rutgers University, Department of Earth and Environmental Sciences, Newark, New Jersey, USA..

4. Advanced Geosciences Inc., Austin, Texas, USA..

Abstract

Continuing advancements in subsurface electrical resistivity tomography (ERT) are increasing its capabilities for understanding shallow subsurface properties and processes. The inability of ERT imaging data to resolve unique subsurface structures and the corresponding need to include constraining information remains one of the greatest limitations, yet provides one of the greatest opportunities for further advancing the utility of the method. We propose a new method of incorporating constraining information into an ERT imaging algorithm in the form of discontinuous boundaries, known values, and spatial covariance information. We demonstrated the approach by imaging a uranium-contaminated wellfield at the Hanford Site in southeastern Washington State, USA. We incorporate into the algorithm known boundary information and spatial covariance structures derived from the highly resolved near-borehole regions of a regularized ERT inversion. The resulting inversion provides a solution which fits the ERT data (given the estimated noise level), honors the spatial covariance structure throughout the model, and is consistent with known bulk-conductivity discontinuities. The results are validated with core-scale measurements, indicating a significant improvement in accuracy over the standard regularized inversion and revealing important subsurface structure known to influence flow and transport at the site.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3