Electric potential source localization reveals a borehole leak during hydraulic fracturing

Author:

Haas A. K.1,Revil A.2,Karaoulis M.1,Frash L.3,Hampton J.3,Gutierrez M.3,Mooney M.3

Affiliation:

1. Colorado School of Mines, Department of Geophysics, Golden, Colorado, USA..

2. Colorado School of Mines, Department of Geophysics, Golden, Colorado, USA and ISTerre, CNRS, UMR CNRS 5275, Université de Savoie, Le Bourget du Lac, France..

3. Colorado School of Mines, Department of Civil & Environmental Engineering, Golden, Colorado, USA..

Abstract

A laboratory experiment was performed to see if passively recorded electric signals can be inverted to retrieve the position of fluid leakages along a well during an attempt to hydraulically fracture a porous block in the laboratory. The cubic block was instrumented with 32 nonpolarizing sintered Ag/AgCl electrodes. During the test, several events were detected corresponding to fluid leakoff along the seal of the well. Each event showed a quick burst in the electric field followed by an exponential-type relaxation of the potential distribution over time. The occurrence of these “electric” events was always correlated with a burst in the acoustic emissions and a change in the fluid pressure. These self-potential data were inverted in two steps: (1) using a deterministic least-square algorithm with focusing to retrieve the position of the source current density in the block for a given snapshot in the electric potential distribution and (2) using a genetic algorithm to refine the position of the source current density on a denser grid. The results of the inversion were found to be in excellent agreement with the position of the well where the hydraulic test was performed and with the localization of the acoustic emissions in the vicinity of this well. This experiment indicates that passively recorded electric signals can be used to monitor fluid flow along the well during leakages, and perhaps monitor fluid flow for numerous applications involving hydromechanical disturbances.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3